Dynamical Systems
Tutorial 10: Smale Horseshoe

June 24, 2019

1 Definition of the Smale horseshoe map
Consider a map f, from the square D having sides of unit length into R:
f:D—>R D= (xy) eR*[0<x<1,0<y<1

which contracts the x-direction, expands the y-direction, and folds D around, lay-
ing it back on itself:
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We will assume that f acts affinely on the “horizontal” rectangles
Hy={(z,y) eR*|0< 2 <1,0<y<1/u}, (23.1.2)

and
Hy={(z,y) eR*|0<2<1,1-1/u<y <1}, (23.1.3)

taking them to the “vertical” rectangles

f(H)=Vo={(z,y) eR*|0< 2 <A 0<y< 1}, (23.1.4)

and

fH) =V ={(z.y) eR*|1-A1<2<1,0<y <1}, (23.1.5)

with the form of f on Hy and H; given by
Hu:($)F+(A U)(m)‘
Y 0 pn/\y
HI:(I)F+(_A {})(I)—k(l).
Y 0 -n/\y Iz

and with 0 <A < 1/2,u> 2. (Note: the fact that on H; the matrix elements are
negative means that in addition to being contracted in the x-direction by a factor
A and expanded in the y-direction by a factor u, Hj is also rotated 180°.)

Additionally, it follows that f~! acts on D as shown below, taking the "verti-
cal" rectangles Vp and V| to the "horizontal rectangles” Hy and H; respectively.

(23.1.6)
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We note the following property of f:

Lemma 23.1.1 a) Suppose V is a vertical rectangle; then f(V)ND consists
of precisely two vertical rectangles, one in Vy and one in Vy, with their
widths each being equal to a factor of A times the width of V. b) Suppose
H is a horizontal rectangle; then f~'(H) N D consists of precisely two
horizontal rectangles, one in Hy and one in Hy, with their widths being a

factor of 1/ times the width of H.

By "vertical/horizontal rectangle" we mean a rectangle in D whose sides par-
allel to the y/x axis (respectively) have length one. The proof idea is as below, full
proof may be found in Wiggins.
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2 Construction of the invariant set

We will now geometrically construct the set of points A which remain in D under
all possible iterations by f; thus A is defined by
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Denote AT = () f"(D) and A~ = () f"(D). We have A=ATNA". We
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construct each of ‘?he invariant sets (forward and backward) separately, by induc-
tion, and then determine the limit. In order to keep track of the iterates of f at
each step of the inductive process, let S = {0, 1} be an index set, and let s; denote
one of the two elements of S, i.e.,s; € S,i=0,+1,£2,---.



2.1 Theset A"

D f(D). By the definition of f, D f(D) consists of the two vertical
rectangles V; and Vi, which we denote as follows

DN f(D) = U Vi, ={peD|peV,_,, s €8}, (23.2.1)

s_1E8

where Vi_| is a vertical rectangle of width A; see Figure 23.2.1.

FIGURE 23.2.1.

DN f(D)N f2(D): Following some manipulations, it can be written as

DN f(D)n f3(D)
= (fVe)nVe)= |J Vi
iy 2
={peD|peV, [ p) €V, , s €85i=12} (2325)



Pictorially, this set is described in Figure 23.2.2.
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FIGURE 23.2.2.

So you can see we get 4 = 22 vertical stripes of width A2

DN f(D)N f2(D) N f3(D): Using the same reasoning as in the previous steps,
this set consists of eight vertical rectangles, each having width A>:
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which we denote as follows
DN f(D)n fA(D)n f3(D)

= U (Vi dnVe)= U Voieuss

s_1£8 s8_E8
1=1,2.3 =123
= {j-’ eD|peViy, fp) e Vi,
f2(p)eVe,, s ;€8,i=12 3}, (23.2.6)

Inductively, we can show that

T ay
={peD|fp) eV, s €8 i=1--k} (23.2.7)
and that this set consists of 2% vertical rectangles, each of width A.

An important observation concerning the nature of this construction process:
at the kth stage, we obtain 2% vertical rectangles, and each vertical rectangle can be
labeled by a sequence of 0’s and 1’s of length k. The important point to realize is
that there are 2* possible distinct sequences of 0’s and 1°s having length k and that
each of these is realized in our construction process; thus, the labeling of each
vertical rectangle is unique at each step. This fact follows from the geometric
definition of f and the fact that Vj and V) are disjoint. (This is unlike f(x) = 2x
mod 1.)

Inductively, we can show that



Letting k — oo, since a decreasing intersection of compact sets is non-
empty, it is clear that we obtain an infinite number of vertical rectangles
and that the width of each of these rectangles is zero, since limg 0o A¥ =0
for 0 < A < 1/2. Thus, we have shown that

Nro= |J (GVeyos,)NVe,)
e :gz_lgﬁ

U Voo

s_;ES8
i=12....

={peD|[fp) eV, 5:€8i=12-}
(23.2.8)

Each vertical line can be labeled by a unique infinite sequence of 0’s and 1’s
as mentioned above.

2.2 Theset A~

In a similar manner, we have for the backward sets:

D f~Y(D). From the definition of f, this set consists of the two horizontal
rectangles Hy and H, and is denoted as follows

DN (D)= |J He ={peD|pe H,,, 50 € S}. (23.2.9)
spES

See Figure 23.2.4.

FIGURE 23.2.4.



Dn f~HYD)n f4D)
= U {f_]{H-‘:) ﬁH-‘u) = H-‘""l

a8, ES 8, ES
=01 i=0,1

={peD|peH,, f(p)€ H,,,si €S,i=0,1}. (23.2.12)
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Continuing this procedure, at the kth step we obtain DN f~1(D)N---Nf~*(D),
which consists of 2¢ horizontal rectangles each having width 1/uf, where again
each rectangle is labeled uniquely by a sequence of 0’s and 1’s of length k.
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Taking the limit kK — oo, we get an infinite set of horizontal lines, each line
labeled uniquely by 0’s and 1’s:

ﬁj.n(p}: U (f(Hes)nH) = | Hepoo
=00 s{ES 8, €S
i=01,-- i=(01,--

={peD|f(p)e H,,s;€8,i=01---}. (23.2.15)
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Thus, we have

= 0 ro=[N ro)

n=—00

n [ﬂ j'"(D}}. (23.2.16)

n=I()

which consists of an infinite set of points, since each vertical line in
ML, f™(D) intersects each horizontal line in ﬂ”_“ (D) in a unique
point. Furthermore, each point p € A can be labeled uniguely by a bi-
infinite sequence of ('s and 1's which is obtained by concatenating the
sequences associated with the respective vertical and horizontal lines that
serve to define p. Stated more precisely, let s_y-+-s_p -+ be a particular
infinite sequence of 0's and 1's; then V, ... .. corresponds to a unique
vertical line. Let sg--- s, -+ likewise be a particular infinite sequence of
(’s and 1's; then H, .., ...
horizontal line and vertical line intersect in a unique point p; thus, we have

corresponds to a unique horizontal line. Now a
a well-defined map from points p € A to bi-infinite sequences of 0's and 1's

which we call .

&
Pr—> 8 k- -+8_18) " 8"

Notice that because

1’!5 1" _{pED|j_t+] ;J:}El’!n_ -—]1.*"}
- {pE D|f~ (p eH, ,i= l}

since f(H, )=V, (23.2.17)

and _
Hayonpo. = {pED|fi(p) € Hayyi =0,---}, (23.2.18)

we have
p=Vi s oo MH, .4

={peD | _f (p) € Hﬁ,. i=0,%+1,%£2--.}. (23.2.19)

Therefore, we see that the unique sequence of 0’s and 1’s we have associated
with p contains information concerning the behavior of p under iteration by f.
In particular, the si-th element in the sequence associated with p indicates that

fk(p) E Hsk-
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3 Symbolic Dynamics

Notice that for the bi-infinite sequence of 0’s and 1’s associated with any p € A, the
decimal point separates the past iterates from the future iterates; thus, the sequence
of 0’s and 1’s associated with fk( p) is obtained from the sequence associated with
p merely by shifting the decimal point in the sequence associated with p k places
to the right if k is positive or k places to the left is k is negative. More accurately:

Theorem 5.1.1. There is a 1-1 correspondence ¢ between A and the set X
of bi-infinite sequences of two symbols such that the sequence b = ¢(f(x)) is
obtained from the sequence a = ¢(x) by shifting indices one place: b; = a;, ,.
The set £ has a metric defined by

1 ifa # b,

i==m

= : 0 if q=b,,
d(a, b) = Z 6,271l r‘i,—:{ na ' (5.1.2)

The map ¢ is a homeomorphism from A to Z endowed with this metric.

You can find the proof at the end of the document or in Guckenheimer and
Holmes.

The correspondence ¢ between A and X imparts to A a symbolic descrip-
tion which is an extraordinarily useful tool for understanding the dynamics

of A. It is helpful to give a formal name to the process of “shifting indices.”
Thus

g.L=ZX (5.1.4)

the shift map, is defined by a(a) = bwith b, = a,. ,. The basic property of the
theorem is now restated as the equation

Do(fla) =000 (5.1.5)

This equation expresses the topological conjugacy of f |, and o. Written as
fla = ¢~ " oo ¢, it has the immediate consequence that

ffla=¢d 1oa" o, (5.1.6)
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so that ¢ maps orbits of f in A to orbits of ¢ in Z. The description of o is
explicit enough that many dynamical properties are readily determined.
For example, a periodic orbit of period n for & consists of a sequence which is
periodic: a; = a;., for all i in the sequence a. Fixing n, we readily count the
sequences with the property a; = a,,, and find that /" has 2" fixed points
in A. This set includes all points which are periodic with period n or a divisor
of n.

To summarize, we have:

Theorem 5.1.2. The horseshoe map f has an invariant Cantor set A such that:

(a) A contains a countable set of periodic orbits of arbitrarily long periods.
(b) A contains an uncountable set of bounded nonperiodic motions.
(c) A contains a dense orbit.

Moreover, any sufficiently C* close map f has an invariant Cantor set A with
I |& topologically equivalent to f |,.

where the last part of the theorem is a result of the robustness of the horseshoe
map - see more in (GH).
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Appendix - Proof of conjugacy between the shift map
and the horseshoe map (GH)

Notice we used Hy and H; whereas here they use H; and H», and we denoted the
square D instead of S - everything is of course equivalent...

Proor. The proof of this theorem provides a basic illustration of how
symbolic dynamics works. Take the two symbols of the theorem to be 1 and 2.
The map is defined by the recipe

P(x) = {a}j< - .. with fi(x)e H,,. (5.1.3)

In words, xisin A ifand onlyif f‘(x)isin H, w H, foreach i, and we associate
to x the sequence of indices that tells us which of H, and H, contains each
f'(x). Unlike the map f = 2x (mod 1), this definition of ¢ is unambiguous
because H, and H, are disjoint. This description of ¢ leads immediately
to the shift property required by the theorem: since f'*'(x) = f{(f(x)). it
follows that ¢( f(x)) 1s obtained from ¢(x) by shifting indices. To see that ¢
is both 1-1 and continuous, we look at the set of x’s which each possess a
given central string of symbols. Specifying b_,,. b_ s 1y bg,. .., b, we
denote as R(h_,,, b _piysev-"bos..., b,) the set of x's for which f(x)e H,,
for —m < i < n. We observe inductively that R(b_,,,...,b,) 1s a rectangle of
height """ and width A", obtained from the intersection of a horizontal
and a vertical strip. As one lets m, n — 2, the diameter of the sets
Rb_,,,.... b,) — 0. Consequently, ¢ is both 1-1 and continuous.

The final point is that ¢ is onto. This is crucial for the applications of
symbolic dynamics. The reason that ¢ is onto is that for each choice of
b_pi....b,, the set R(b_,,...., b,) is nonempty. To see this, reference to
Figure 5.1.2 is helpful. Note that R(b,, ..., b,) is a horizontal strip mapped
vertically from top to bottom of the square S by f"*'. Therefore,
1" YR(bg,..., b,)) intersects each H, and R(b,, ..., b,, b, ) is a nonempty
horizontal strip extending across S. Similarly, we have already observed that
SAf(S) - f™S) consists of 2™ vertical strips. Each of these is a set
of the form R(b_,,,...,b_,)and all sequences (b_,,,...,b_,)occur. Finally,

Rb_,,...., b,) is nonempty because every vertical strip R(b_,,,...,b_,)
intersects every horizontal strip R(b,,..., b, and R(b_,,....b,) =
Rb_,.....b_;) " R(bgy,..., b,). O
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Figure 5.1.2. Iteration of f : ¥, = f*(H,)).
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